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The TURBIT-3 computer code has been used for the direct numerical simulation of 
BBnard convection in an infinite plane channel filled with air. The method is based on 
the three-dimensional non-steady-state equations for the conservation of mass, 
momentum and enthalpy. Subgrid-scale models of turbulence are not required, as 
calculations with different grids show that the spatial resolution of grids with about 
322 x 16 nodes provides sufficient accuracy for Rayleigh numbers up to Ra = 3.8 x lo5. 
Hence this simulation model contains no tuning parameters. 

The simulations start from nearly random initial conditions. This has been found to 
be essential for calculating flow patterns and statistical data insensitive to grid para- 
meters and agreeing with experimental experience. The numerical results show the 
theoretically predicted ‘skewed varicose’ instability at Ra = 4000. Warm and cold 
‘blobs ’ are identified as causing temperature-gradient reversals for all the high 
Rayleigh numbers under consideration. The calculated wavelengths and the corre- 
sponding flow regimes observed in the transition range confirm the stability maps 
determined theoretically. In the turbulent range the wavelengths agree qualitatively 
with low-aspect-ratio experiments. Accordingly, the Nusselt numbers lie at  the upper 
end of the scatter band of experimental data, as these also depend on the aspect ratio. 
Appropriately normalized, the velocity and temperature fluctuation peaks are inde- 
pendent of the Rayleigh number. The vertical profiles agree largely with experimental 
data and, especially in case of temperature statistics, exhibit comparable or less scatter. 

1. Introduction 
In this paper the classical BBnard problem of thermal convection in a horizontal 

infinite fluid layer heated uniformly from below is investigated by direct numerical 
simulation. The method is based on the solution of the complete, non-steady-state, 
three-dimensional equations of the conservation of mass, momentum and heat. The 
gross structure of the turbulent fields is described directly by a finite-difference grid. 
If grids with poor resolution are used, subgrid-scale structure models are necessary to 
describe the exchanges of momentum and heat of the small turbulence elements not 
resolved by the grid. 

Although direct numerical simulation has already been applied to a few cases of 
BBnard convection, it has not yet been applied to the investigation of turbulent con- 
vection at high Rayleigh numbers. Earlier work, as presented by Deardorff & Willis 
(1965) and Lipps & Somerville (1971), is based on a two-dimensional formulation of 
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the fundamental equations without the use of a subgrid-scale model. The two- 
dimensional simulations run into various problems, for example the computed heat 
transfer is too high, and the transition from laminar to turbulent flow is calculated to 
occur a t  Rayleigh numbers higher than those observed experimentally (Deardorff & 
Willis 1965). In the three-dimensional simulations by Lipps & Somerville (1971) and 
Ozoe et al. (1976) no subgrid-scale models were used; instead, simulations were carried 
out mainly for laminar and transition flow regimes. For turbulent convection only one 
simulation case is known for Ra = 25 000 (Lipps 1976). The problems stated are the 
strong influences of the grid widths chosen and of the periodicity lengths on the 
calculated statistical data. 

In  the present work turbulent natural convection at low and medium Rayleigh 
numbers is directly simulated numerically by the TURBIT-3 computer code 
(Grotzbach 1979) based on the complete, three-dimensional, non-steady-state equations 
of the conservation of mass, momentum and enthalpy. The aim of this work is to show 
that by use of currently available computer systems this three-dimensional scheme 
may be applied to the Rayleigh-BBnard convection of air with Rayleigh numbers up 
to 381 225 without using a subgrid-scale model. Generally, agreement with experi- 
mental data can be obtained for all flow conditions and for most of the statistical data 
of the flow fields. The only condition for obtaining reasonable results is the use of 
nearly randomly distributed initial values and sufficiently fine grids. For the highest 
Rayleigh number, for instance, this agreement can be obtained from simulations 
using 32 x 162 mesh points. Increasing the node numbers up to 64 x 322 shows that 
about 322 x 16 mesh points are required to get results largely independent of the grids. 

2. Basic equations of the method of simulation 
2.1. Basic equations of motion 

The basic equations for laminar and turbulent convection are the equations for the 
conservation of mass, momentum and energy. For simplicity, the Boussinesq approxi- 
mation is adopted. This implies the assumption that the physical properties in all terms 
of these equations can be considered as constant, except for the buoyancy term. If 
Cartesian co-ordinates are used with x1 and x2 horizontal and x3 directed upwards then 
the equations for the velocity components ui (i = 1,2,3),  pressure p and temperature 
T are 

-+>=- -- 
aT at aTu. axj axi a ( PrRe,axj ”’) a 

The Einstein summation rule is applied to all terms bearing the same subscript twice. 
Equations (1) are normalized with the plate spacing B (variables marked by are 
dimensional), the difference in temperatures between the bottom and top walls 
APW = Pwl - 9w2, the time scale t” = B/&,, and the pressure where p^ is the 
density. Thus the dimensionless numbers used are the Reynolds number Re, = &,B/P, 
the Prandtl number Pr = P I & ,  and the Rayleigh number, Ra = a/?AFw B3/0&, where 

= 
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8 is the acceleration due to gravity, /? is the volume-expansion coefficient, P is the 
kinematic viscosity and 6 is the temperature-conductivity coefficient. The velocity 
scale $2, = (O/?AFN,B)* was chosen so as to normalize the buoyancy term to unity. The 
reference temperature Tref in the buoyancy term is set equal to the volume average in 
the entire channel "(T),  in order to avoid a net contribution to the buoyancy term. 

2 . 2 .  Numerical model 
Finite-difference formulas for the numerical solution of the differential equations (1)  
are derived by the method also used by Schumann (1973, 1975a). These equations are 
integrated formally over the mesh volume V = Axl Ax2Ax,, which furnishes the 
volumetric average for any variable y : 

y(x; ,  x;, x i )  ax; ax; ax;. 
1 

21- 

Y =  AXlAX2A%LX1 Lxz !Az* 

By applying Gauss's theorem, the volume average of the partial derivatives is trans- 
formed directly into a finite-difference form of the surface average values ig, where i 
denotes the index of the direction normal to the respective mesh cell surface: 

- 
(3) 

way i 

axi  AX^ - = - [ i D ( ~ i  +   AX^) - -  AX^)] = Si$. 

Application of (2 and 3) to the basic equations ( l ) ,  together with the splitting of the 
velocity and temperature fields into spatial averages directly resolved by the grid, 
3Ei, "F, and into 'subgrid-scale ' parts not resolved spatially, ui = ui - j i i j ,  T' = T - " p ,  
provides a finite-difference formula programmable in an almost-direct manner : 

S,iUi = 0 )  ( 4 4  
a .- Ra - - 
~"Ui+SijUij;ii'+S33U~U~ = -Siijj-- prReg ("Trei-"T)Si3+aj 

The remaining derivatives are approximated according to (3). Adaptation to a 
staggered grid requires a few additional averages in the convective terms in order to 
approximate variables between two nodes. A weighted linear average gi is used to 
account for grids with variable mesh widths Axi: 

This results in the following explicit finite-difference scheme, written without space- 
averaging bars, where the superscript n refers to the time step, tn = nAt: 

The pressure pn  is determined from a Poisson equation 

SiSipn = 8iQr+1/2At, (7) 
2-2 
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so that the new time-level velocities 

$+I = cr+1- (2At) Sip% (8) 

satisfy the continuityequation (4a). Equation (7) is solved by a fast Fourier transform. 
Equations (6a, b )  correspond to a leapfrog scheme, starting with an Eulerian step and 
interrupted by an averaging step after every nL time steps (typically, nL = 40). The 
permissible size of the time step is determined from a linear stability analysis (Schu- 
mann i975b).  

The accuracy of this finite-difference scheme was thoroughly tested by Schumann 
(1973) on equidistant and non-equidistant grids for non-buoyant flows. Highly non- 
uniform grids were employed successfully in simulations of annular flows with small 
ratios of radii (Grotzbach 1977). (The actual computer code is written for both 
Cartesian and cylindrical co-ordinate systems.) 

2.3. Turbulence assumptions 
The well-known closure problem in connection with the Reynolds equations averaged 
over time by analogy occurs in (4). The unknown shear stresses ju;u; and heat fluxes 
uiT‘ appearing in (4) contain only the part of the turbulent exchange not resolved by 

the grid. Thus they tend to zero, if highly resolving grids (Ax, -+ 0) are used. This is 
true in particular of applications to small Rayleigh numbers, since in these cases only 
very large vortices are formed, which are of the magnitude of the channel width. 

In all simulations reported below the subgrid-scale structure terms are neglected, 
which means that ’G = ’u;T’ = 0. Thus the entire system of equations does not 
contain a single adjustable parameter, except for the problem-identifying parameters 
Ra and Pr, and for the choice of the grid. It must only be ensured that the mesh grid 
resolves even the smallest relevant turbulence elements. It is shown in the appendix 
that this assumption is valid for the finest grids used here. 

- 
3 ’ 7  

.- 

2.4. Boundary conditions 

In both horizontal directions of the plane channel considered, periodic boundary 
conditions are used for all velocity components, pressure and temperature. The 
respective periodicity lengths X ,  = IMAx,  and X, = JMAx,  are prescribed in the 
number of meshes I N  and J M ,  and the mesh widths Ax, and Ax,. For the diffusive 
terms at  the walls the no-slip wall conditions and the wall heat fluxes have been 
formulated corresponding to the laminar-flow condition proposed by Grotzbach ( 1977) 
and Grotzbach & Schumann (1979), which means that linear finite-difference approxi- 
mations are used. The major drawback in this approximation is that extremely fine 
meshes must be used in the x3 direction near the wall to resolve the steep gradients in 
the temperature field. This is especially true of high Rayleigh numbers. The boundary 
condition for the pressure S3p = 0 at  the walls follows from (8) and the boundary 
conditions u;+l = U”:+l = 0 a t  the walls. 

3. Initial values and case specifications 
To start the time integration of the basic equations, initial values are required for the 

velocity and temperature fields. In order to shorten the computer time required to 
reach fully developed equilibrium, the statistical properties of the initial values should 
be very close to the steady-state solutions. There is no general restriction in the 
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Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Ra 

1500 
4 000 
7 000 

87 300 
87 300 
87 300 

381 225 
381 225 
381 225 
381 225 
381 225 
381 225 
381 225 
381 225 

IM JM K M  Axl Ax, 

16 16 8 0.175 0.175 
16 16 8 0.175 0.175 
16 16 8 0.175 0.175 
16 16 8 0.175 0.175 
16 16 8 0.175 0.175 
16 16 16 0.175 0.175 
16 16 16 0.175 0.175 
32 16 16 0.175 0.175 
32 16 16 0.088 0.175 
16 2 16 0.175 0.175 
32 2 16 0.175 0.175 
32 32 16 0.088 0.088 
32 32 32 0.088 0.088 
64 32 32 0.044 0.088 

A 5 3 w  

0.125 
0.125 
0.125 
0.125 
0.0625 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.01 
0.01 

N T  

500 
1060 
1060 
1060 
1200 
1880 
1320 

920 
920 

2 000 
2 280 
3 680 
5 040 
3 880 

t,,, " 
25.05 1 
71.45 1 
84.95 1 
85.4 1 
84.1 1 
33.5 1 
41-01 8 
28.49 8 
26.85 8 
67.33 26 
75.0 33 

100.7 40 
42.7 64 
32.7 31 

TABLE 1. Case specifications and time intervals simulated. = Ax3K=1 = vertical grid 
width near the wall. The complete vertical profile of Ax, is given in table 4. 

statistical properties of the initial values, except for the flow structures in these fields. 
To avoid the pre-determination of special roll vortex patterns by the choice of initial 
values, all velocity fields are set to zero at  the time t = 0. The temperature fields are 
chosen in such a way that the vertical profiles of the statistical averages in the flow core 
agree with the experimental results. The approximately linear temperature curves 
found in the centre between the plates are linearly extrapolated to the walls. Random 
temperature variations have been superimposed upon these temperature fields, with 
maximum amplitudes of T' = & 0.05. This is necessary, as the onset of convection is 
caused by a disturbance. 

Further input data for the computer simulation of BBnard convection are the mole- 
cular Prandtl number of air (Pr = 0.71), the Rayleigh number and the grid parameters 
(table 1). The Rayleigh numbers in cases 1-3 were selected to represent a t  least one 
simulation for each flow condition according to the flow regime diagram of Krishna- 
murti (1973). The other cases were chosen for direct comparison with the experimental 
results of Thomas & Townsend (1957). Different grids were chosen to analyse influences 
of different mesh spacings on the simulated convection. Results by Lipps (1976) show 
such influences, especially for low Rayleigh numbers. Therefore special emphasis was 
put on finding the maximum-allowable grid width and the influence of the periodicity 
lengths for the high-Rayleigh-number simulations. In particular, cases 12-14 have 
been taken from Grotzbach (1 980) to confirm the high-Rayleigh-number simulations 
of this work. 

4. Numerical results 
Starting from initial values defined above, (6)-(8) were integrated in the time 

domain until largely steady-state conditions, in a statistical sense, had been established 
for st period suitable for evaluation. The respective number of time steps NT and 
problem duration time t,,, are indicated in table 1. The CPU times consumed on an 
IBM 370/168 are about 460ps per mesh cell and time step, which results in a total CPU 
time of 58min, for example, for cases 8 and 9. 
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0 
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0 
0 1.4 2.8 - *2 

1 

0 
0 1.4 2.8 

X1 

*r  

I =  4 

A = 0.0625 

ijji 
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A = 0.033 

0,266 

iGi 

J =  4 

A = 0.033 

0.292 

FIGURE 1. Vertical sections of the temperature and velocity fields a t  t = 68.4 for Ra = 4000. The 
sectional planes (from top to bottom) are the (xz, 2,)-plane, (xg, x3)-plane and the (xl, %,)-plane. 
VKM is the maximum vector length, A is the contour-line increment. The mesh indices I ,  J 
denote the positions of the cross-sections z1 = ( I -  1) 4z, and zz = ( J -  1) 4x,. 

4.1. Phenomenological evaluation of the results of simulation 

The numerical results are compared qualitatively on the basis of contour-line and 
vector representations of the instantaneous velocity and temperature fields (figure 1-7). 
For the velocity field the isolines show the values of the component normal to the 
drawing plane. The isoline increment A is constant. Non-negative values are repre- 
sented by solid lines, negative values by dashed lines. The additional dashes indicate 
the magnitude and directions of the velocities in the plotting plane. The origin of the 
dashes is located a t  the respective nodal point of a mesh. 

For the subcritical case with Ra = 1500 the convection caused by the initial 
conditions tends to zero. The conduction-controlled temperature field remains 
unchanged by the decreasing convection. The resultant stratification behaves in a 
stable mode. This is in accordance with experiments performed for different Prandtl 
numbers for Ra < 1708 (Brown 1973; Krishnamurti 1973; Silveston 1958). 

Vertical sections of the velocity and temperature fields for Ra = 4000 are represented 
in figure 1 for one of the last time steps of simulation. The temperature field undergoes 
major distortions in the directions of convection. All fields are well arranged, which is 
indicative of laminar convection. The related horizontal section in figure 2 indicates 
the presence of vortex pairs whose horizontal axes extend diagonally through the grid. 
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2.8) 

1.4) 

2.8 

1.4 

f = 68.4 

A = 0.03 3 

0.08 

1.4 2.8 ( 1.4) (2.8) 0 

x 1 

FIGURE 2. Horizontal section of the velocity field at  t = 68.4 and z3 (K  = 4) = 0.438 for 
Ra = 4000. A = 0.033 and VKM = 0.08. The figure consists of four identical plots. The 
mesh index K denotes the position of this cross-section according to table 4 and 

K-1 

n = l  
z3(R) = X Ax,(n)+gAz,(K). 

For better identification of this stationary flow regime this figure was composed out 
of four identical plots. As a result, space-periodic enlargements and contractions of 
the regions of upward and downward flows can be identified. This can be interpreted 
as a so-called ‘skewed-varicose’ flow regime and is known to occur for larger Prandtl 
numbers, as was shown by Busse & Clever (1979). 

For Ra = 7000 the different sections of the velocity fields show that non-steady-state 
three-dimensional vortex structures are formed (figures 3 and 4). This is a vortex pair 
whose sense of rotation does not depend on time. The periodicity of the field as a 
function of time can be deduced from the us isolines in figure 4. It is obvious from the 
horizontal sections that the axes of vortices pointing in the x1 direction are deflected 
in the xp direction with a period r = 16.9. The three-dimensional periodic flow found 
here for Ra = 7000 agrees with the experimental results of Willis & Deardorff (1965) 
and Krishnamurti (1973). 

A vertical section of the temperature field has been included in figure 3. The 
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0 1.4 

x2 

2.8 

v T  

t = 58.5 

A = 0.0625 

53, 

t = 58.5 

A = 0.013 

0.35 

FIGURE 3. Vertical sections of the temperature and velocity fields for 
I = 4 and Ra = 7000; (z2, 2,)-plane. 

t = 58.5 VKM = 0.16 t = 74.1 VKM = 0.16 

t = 64.9 VKMz0.15 r=81.1 VKM = 0.1 5 

FIGURE 4. Horizontal sections of the velocity fields at different times 
for z3(K = 4) = 0.438 and Ra = 7000; A = 0.05. 
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1 = 4  

A = 0.036 

0.55 
. .  

0 I .4 2: 8 - x2 

J =  4 

A = 0.07 

0.43 

K = 4  

A = 0.07 

0.376 

0 - x, 1.4 2.8 

FIGURE 5 .  Vertical and horizontal sections of the velocity 
field for t = 67.3 arid Rn = 87 300 : cas9 4. 

isotherms are shifted in the directions of the flow. Higher heat-transfer values occur 
locally in the vicinity of the stagnation points a t  the walls. Moreover, near these zones 
the isotherms expand more strongly in the horizontal direction than for Ra = 4000. 
Consequently, the vertical temperature profile in the middle between the upward and 
downward flows shows a local change of sign in its vcrtical gradients. 

The velocity field for Ra = 87 300 shown in figure 6 has no regular structures. The 
randomized nature of the fields indicates a fully turbulent flow. This conclusion can 
also be drawn from the time sequence of vertical sections through the temperature 
field represented in figure 6. The upward movement of hot' fluid and the downward 
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1 

t = 67.3 

A = 0.0625 
0 1.4 

X 2  

2.8 

FIGURE 6. Vertical sections of the temperature field at  different 
times for I = 4 and Ra = 87300, case 4;  (z2, 2,)-plane. 

movement of cold fluid is irregular and aperiodic. This is in accordance with experi- 
mental results of Krishnamurti (1973) and Willis & Deardorff (1965), which show 
turbulent convection at Ra > 10 000 for Pr = 0-7 1. 

The vector and isoline representations in figure 7 for R a  = 381 225 largely corre- 
spond to those in figures 5 and 6. However, the degree of irregularity has increased 
slightly. Besides, the spatial extension of the structures encountered has decreased. 
The spatial extension of the smallest structures recorded is comparable to the grid 
width. 

4.2. Statistical evaluation of the results of simdation 
For quantitative comparison of the numerical results with the statistical data deter- 
mined experimentally, the non-steady-state numerical results must be evaluated and 
averaged appropriately. For this purpose, average values are formed over horizontal 
planes. In some cases, these values in addition have been averaged over N M  time steps 
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x3  I 

0 
1 

M 

2.82 0 1.41 
X I  

- 
"T 

t = 24.604 

A = 0.0625 

t = 26.849 

A = 0.0625 

iGi 

t = 26,849 

A = 0.1 

0.3 5 

?I 

FIGURE 7. Vertical sections of the temperature and velocity fields a t  different 
times for J = 4 and Ra = 381 225, case 9;  (xl, a,)-plane. 

(table 1) to furnish long-term averages. I n  such time averaging the results for every 
40th time step have been used. The notation for such averages is (y). 

The Nusselt number has been evaluated on the basis of the dimensionless relation 
Nu = (q,,,, + qcond)/qcond = (4,) Re,, Pr/<ATw) for the convective and conductive 
heat fluxes. The results have been compiled in table 2. To compare these results with 
experimental data the coefficient cq of the heat transfer law Nu = c,Ra) has been 
calculated and plotted (figure 8), as was proposed By Denton & Wood (1979). The 
numerical results concerning cases with high spatial resolution are in agreement with 
the interpolation formula given by Busse & Whitehead (1974): Nu = 0.19 x Ra0.282. 



w
 

a,
 

C
as

e 
Ra

 

1
 

15
00

 
2 

4
 0

00
 

3
 

7 
00

0 
4

 
87

30
0 

5
 

87
30

0 
6 

87
30

0 
7 

38
12

25
 

8
 

38
12

25
 

9
 

38
12

25
 

10
 

38
12

25
 

11
 

38
12

25
 

M
od

if
ic

at
io

n 
(s

ee
 ta

b
le

 1
) 

A
xS

w
, K

M
 

IM
 

A
x1

 
2-

di
m

en
si

on
al

 
2-

di
m

en
si

on
al

, 

-
 

1.
0 

2.
0 

2.
3 

5.
41

 
4.

51
 

4
.9

4
 

7.
75

 
7.

74
 

7.
44

 
8.

6 
IM

 
8.

5 

-t
o 0

-1
3

 
0.

31
 

0.
15

 
0.

15
1 

0.
17

3 
0.

16
3 

0.
17

5 
0.

15
1 

0.
25

0 
0.

24
4 

+O
 0.
14

2 
0.

25
 

0.
20

6 
0.

21
5 

0.
16

5 
0.

18
0 

0.
14

3 
0.

16
3 

0.
08

6 
0.

07
 

+O
 

i
 

0.
20

2 
0.

18
9 

0.
21

5 
0.

20
2 

0.
23

4 
0.

20
7 

0
-2

1
3

 
0.

20
7 

0.
25

3 
0.

26
1 

-0
 

0.
18

4 
0-

19
9 

0
-1

4
3

 
0.

15
2 

0.
16

1 
0.

16
6 

0.
16

3 
0.

15
7 

0.
16

7 
0.

16
4 

-
 

-
 

-
 

0.
75

8 
0.

67
 

0-
65

9 
0-

72
4 

9
 

T
A

B
L

E
 2.
 N

um
er

ic
al

 r
es

u
lt

s 
fo

r 
th

e 
N

u
ss

el
t 

n
u

m
b

er
, t

h
e 

m
ax

im
u

m
 r

.m
.s

. v
al

u
es

 f
or

 th
e 

fl
u

ct
u

at
io

n
s 

of
 t

h
e 

th
re

e 
ve

lo
ci

ty
 c

o
m

p
o

n
en

ts
 

an
d

 o
f 

th
e 

te
m

p
er

at
u

re
, a

n
d
 f

o
r 

th
e 

ch
an

n
el

-a
v

er
ag

ed
 v

al
u

e 
of

 t
h

e 
h

ea
t 

fl
ux

 c
ro

ss
-c

or
re

la
ti

on
 c

oe
ff

ic
ie

nt
 



Direct numerical simulation of B6nard convection 39 

0.12 0’13 1 
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\ 

0.05 I ! V 

102 1 0 3  104  105 106 107 
Ra 

FIGURE 8. Comparison of the normalized Nusselt numbers derived from the numerical simulations 
with experimental results. 2d denotes the results for the approximately two-dimensional simu- 
lations, cases 10 and 11, which are discussed in the appendix.V, DeardorfT & Willis (1965), air; 
V, Deardoe& Willis (1967), air; +, Gille (1967), air; x , Krishnamurti (1970), water; a, Malkus 
(1954), water; 0, Threlfall(1975), helium; B, Brown (1973), air; BW, Busse & Whitehead (1974), 
Pr = 20-200; CG, Chu & Goldstein (1973), water; F, Fitzjarrald (1976), air; GC, Goldstein & 
Chu (1969), air; H, Hollands, Raithby & Konicek (1975), air; K, Krishnamurti (1973), air; 
s, Silveston (1958), water; T, Threlfall (1975), helium; *, TURBIT-3, this work, air, case no. 

The other experimental data deviate from each other and from the numerical 
results. 

I n  non-turbulent flows with Rayleigh numbers Ra < 10000 vortex systems are 
formed that consist of vortex pairs with an overall diameter A. Owing to the fact that 
h > D and the periodic boundary conditions, only discrete values of h can be obtained 
from the numerical results. Depending on whether the axes of vortices are parallel to 
the x2 axis or to the x, axis or run diagonally through the grid, the following maximum 
values can occur: h = X,, X2, [(iX,)2+ ( iX2)2 ]* .  The possible values of h and the 
observed ones have been included in table 3. The values indicated for the laminar cases 
have been evaluated from figure 2 and 4. Upper bounds of the values of the turbulent 
cases were obtained by evaluation of the two-point correlation R3, in the x,-direction. 
Rig is defined as (no summation over i) 

Figure 9 represents these two-point correlations for cases 6 and 8. At half the periodicity 
length the correlations for case 6 with Ra = 87 300 still differ greatly from zero. This 
means that either the selected periodicity length X, was assigned too low a value for 
statistical decoupling within different zones of the flow volume recorded, or the axes 
of vortices lie mainly in the z1 direction. This plot a t  the most permits the conclusion 
to be drawn that h E X,. The respective curves for case 8 with Ru = 381 225 and the 
double periodicity length X, = 5-6 tend towards zero for the distance z v iX,. 
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~ L m x  POSE 

Case hmsx obs Case 

1-7, 9 2.8 2.8 1.98 1.66-8.22 2 
2.8 3 

8 5.6 2-8 3.13 1.75-1.86 8 
10 2.8 - 0  U O  N 1.4 10 
11 5-6 - 0  N O  - 1.4 11 

TABLE 3. Maximum possible and observed vortex dimensions 
for the grids, according to table 1 

\ \ n.a 0.1 4 \\ 

-0.5 ( a )  -0.5 ' ( b )  

FIGURE 9. Two-point correlations Rii of the velocity fluctuations iii: = iiii- ( i i i i )  in the x1 
direction for (a) Ra = 87300, case 6 ;  and (b) Ra = 381225, case 8. 0, R I 1 ;  0, R22; A, R34. 

A range for the upper bound for A can be estimated to  be 1.75-1-86. This follows from 
the distance between the extreme values of the same sign or from the assignee. inter- 
sections of the z-axis by R33. 

In  figure 10 the numerical results of cases 2 and 3 have been compared with the 
experimental results of Willis, Deardorff & Somerville (1972) and Brown (1973). The 
value of Ra = 4000 is lower than the value observed most frequently, although the 
grid would allow a higher value. The result for Ra = 7000 agiaes with the maximum 
possible value for this grid. 

Following the definition of the root-mean-square value 

Yrms = W2>' = ((Y - (9))')' 
the peaks of the vertical r.m.s. value profiles of the three velocity components derived 
from the space- and time- dependent results have been represented in table 2 and 
figure 11. For Ra = 1500 all r.m.s. values are close to zero. Within the transition zone 
to turbulent flow (Ra < lo4) the rm1.s. values increase strongly. The u1 and u2 com- 
ponents should be equal in size. The dissimilar values show that the values indicated 
suffer from a 20 yo uncertainty because of the low mesh number and on account of the 
evaluation of only one time step ( N M  = 1, table 1). In  the fully turbulent zone the 
r.m.s. values are independent of the Rayleigh number. For comparison the experi- 
mental results by Deardorff & Willis (1967) have been included in figure 11. 

The influence of the Rayleigh number on the averaged vertical temperature profile 
and on the r.m.s. temperature value is indicated for cases with sufficient spatial 
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FIGURE 10. Vortex dimension h as a function of the Rayleigh number. The dashed lines mark 
the two possible maximum values in the corresponding grids according to table 3. 0, Willis 
et al. (1972); 0, Brown (1973), +, I, TURBIT-3. 

resolution in figure 12. The temperature profiles are more or less point-symmetrical 
with respect t o  the channel centre. For Ra = 1500 the profile is linear. With increas- 
ing Rayleigh number the gradient a t  the wall becomes steeper owing to the increasing 
importance of convection, and the temperature profile inside the channel becomes 
nearly constant. For Ra = 7000 and 87 300 temperature inversions are observed. 

The r.m.s. temperature values are also shown in figure 12. With decreasing Rayleigh 
number the peak moves awa,y from the wall until it lies in the centre of the channel for 
Ru = 4000. For Ra = 1500 the r.m.s. values over the whole zone are zero. While the 
vertical temperatnre profiles are sufficiently well resolved by the predominateIy non- 
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FIGURE 12. Averaged vertical temperature (a)  and r.m.s. temperature value ( b )  profiles for 
different Rayleigh numbers. + , Ra = 1500, case 1 ; x , 4000, 2 ;  A, 7000, 3; 0, 87 300, 6 ;  
0, 381225, 9. 

equidistant vertical mesh distributions selected, finer resolution would be desirable 
for a more accurate determination of the location of the r.m.s. temperature peaks (see 
also the appendix). 

5. Discussion of numerical results 
The computer model used includes no adjustable parameters such as model con- 

stants or empirical wall functions. The influence of the grids selected is discussed in the 
appendix and in Grotzbach ( 1980). It becomes evident there that the spatial resolution 
of most of the grids used in this work is sufficient for an accuracy comparable to that 
usually obtained in laboratory experiments, despite the fact that  the grids used for 
cases 7-9 do not really resolve the smallest scales of turbulence. These are only resolved 
by the grids of cases 12-14, which give more accurate results. In this section significant 
results will be discussed and some discrepancies between calculated and experimental 
data, which seem to exist despite sufficient spatial resolution. 

5.1. Discussion of phenomenological results 

Qualitative evaluation of the numerical results shows that the flow caused by the 
randomly disturbed initial fields disappears a t  a Rayleigh number below the critical 
values as expected; the layer is stable. At the next higher Rayleigh number, Ra = 4000, 
a steady-state flow regime should develop; for example according to the flow regime 
map of Krishnamurti (1973). That map, however, provides no information about the 
dimensionality of this flow. Clever & Busse (1978) predicted theoretically a three- 
dimensional flow regime, which they called ' skewed-varicose ' instability. The existence 
of this flow regime has been confirmed for higher Prandtl numbers in the experiments 
of Busse & Clever (1979). Its wavelength has also been detected for Pr = 0.71 by 
Clever & Busse (1978) in the experiments of Willis et al. (1972). The numerical results 
given in figure 2 show the features discussed above, thus confirming directly 
the predictions of Clever & Busse (1 978) for the Prandtl number under consideration. 

If the Rayleigh number is increased to Ra = 7000, the three-dimensional flow field 
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becomes periodic in time. The horizontal axes of the vortices are periodically distorted 
into serpentines (see figure 4). As suggested by Lipps (1976), the period of oscillation 
seems to depend strongly on the horizontal periodicity lengths. The periodicity lengths 
prescribed do not allow the wavelengths observed in experiments to be recorded 
(figure 10). Nevertheless, the period found here exactly fits the interpolation curve 
given by Krishnamurti (1973). This difference in results between Lipps’ simulation 
and the present work is due mainly to the initial conditions chosen. In this work the 
vortex structures calculated are not given in the initial conditions, but are found as a 
nearly independent result of the numerically simulated physics. Thus from among 
the infinite number of possible wavelengths the optimal one can be developed 
freely. 

For the two highest Rayleigh numbers, the flow regime map of Krishnamurti (1973) 
leads one to expect a fully turbulent convection. Indeed, the flow fields given in 
figures 5-7 are aperiodic and without recognizable regular structures. For the highest 
Rayleigh number (figures 7 and 16) the smallest scales are comparable to or a little bit 
smaller than the grid width of case 9. Therefore the finer grids of cases 12-14 should be 
used, or subgrid-scale structure models will be needed for this and higher Rayleigh 
numbers. 

5.2. Discussion of statistical results 

5.2.1. InJluence of the wavelength on the convective heatJEux. Experimental results for 
the characteristic vortex diameter of Willis et al. (1972) and Brown (1973) show a 
continuous increase, with increasing Rayleigh number, in the laminar-to-turbulent 
transition zone (figure 10). A more stepwise increase a t  high Rayleigh numbers was 
found by Fitzjarrald (1976) for a channel with a large aspect ratio. The same author 
shows the dominant wavelength to decrease with increasing Rayleigh number for a 
small aspect ratio. 

The grids chosen here cannot reflect the maximum wavelengths observed, except 
for the grid of case 2 (figure 10, table 3) .  No agreement can therefore be obtained with 
experimental results, except for case 2. Nevertheless, the wavelengths found in the 
transition zone are in accordance with the many possible values predicted by stability 
theory. Consistent with the Aow regime found for Ru = 4000, the wavelength (table 3) 
is near the ‘skewed-varicose’ instability line in the stability map of Busse & Clever 
(1979) and, for Ra = 7000, near the line of the oscillatory instability. In  the fully 
turbulent region the wavelengths decrease with increasing Rayleigh numbers. They 
are smaller than in the transition zone because small periodicity lengths have been 
prescribed. The influence of the periodicity lengths on the dominant wavelength is 
therefore similar to that of the side walls in low-aspect-ratio experiments. 

The experimental results and empirical correlations for the normalized Nusselt 
number (figure 8) deviate from each other; in part there are considerable deviations. 
For this Prandtl number and others it is still being discussed whether the slope for 
Nu = f (Ra)  undergoes many changes (Krishnamurti 1973; I4’illis et al. 1972; Brown 
1973) or not (Koschmieder & Pallas 1974; Fitzjarrald 1976). It is supposed (see e.g. 
Threlfall 1975; Denton & Wood 1979) that this might be influenced by the differences 
in the finite spatial extension of the channels used, because very extensive vortex 
structures have been observed by Deardorff & Willis (1967) in equipment of large 
horizontal extension. From the work of Lipps & Somerville (1971) and Fitzjarrald 
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(1976), for example, it is known that such large-scale horizontal flow patterns impede 
the heat flux. At smaller aspect ratios the dominant wavelength decreases and, 
consequently, the heat flux is enhanced. 

The numerical results for the Nusselt number in figure 8 are a t  the upper boundary 
of the scattering range of the experimental data. The results follow the empirical 
relation by Busse & Whitehead (1974). Although this relation was derived from 
experiments with Prandtl numbers between 20 and 200, it is nevertheless used for 
comparison, since Silveston (1958) has shown that no influence of the Prandtl number 
can be observed in laminar convection, and that the influence is extremely low 
(Nu N P r o 9  in turbulent convection. According to §A. 2 in the appendix, the 
numerical results of case 9 should be lower by about 6 % owing to the limited reso- 
lution capabilities of the grid used. Yet all results are about 10 yo higher than the 
experimental data for large aspect ratios, in accordance with the shorter wavelengths 
developed. In  the appendix no considerable influence of the periodicity lengths has 
been found, except for the nearly two-dimensional simulations which lead to a further 
decrease of wavelength and, consistently, to an increase in the Nusselt number. 
Therefore one may assume for three-dimensional convection that the curve for high 
Prandtl numbers is an upper limit for the Nusselt number at the Prandtl number of 
air and a t  small aspect ratios. The empirical correlations for the Nusselt number should 
include the aspect ratios or periodicity lengths as additional parameters. 

5.2.2. Development of temperature-gradient reversals. Some of the mean temperature 
distributions determined experimentally, for example by Gille (1967) and Chu & 
Goldstein (1973), show gradient reversals in the central region of the channel for 
Rayleigh numbers up to 5 x lo5. This has been attributed to the coalescence of larger 
numbers of warm ‘blobs’ near the cold wall and of cold ‘blobs’ near the warm wall. 
The temperature profiles determined numerically for Ra = 7000 and 87 300 also show 
gradient reversals (figure 12). For Ra = 381 225 no inversions seem to exist in the 
temperature profiles. Nevertheless, the eddy conductivity profile calculated for case 14 
indicates that slight temperature inversions do exist a t  this Rayleigh number (Grotz- 
bach 1980). 

The corresponding contour-line plots (figures 3, 5, 6 and 16) allow the identification 
of transient structures, which may be called ‘blobs’. There are narrow regions in the 
central parts of the channel (see e.g. figure 16) with high velocities directed to the walls, 
where the flow paths end in larger regions of lorn velocities. This is the mechanism by 
which hot fluid is transported quickly t o  the cold wall, where it remains for some time, 
losing its energy and coming into an equilibrium with the surrounding fluid. The same 
holds true for cold fluid transported downwards. The possibility of studying such 
local transient mechanisms easily is an important advantage of the direct numerical 
simulation technique. 

5.2.3. Consistency of computed turbulencedata. From a datacollection by Deardorff & 
Willis (1967) it can be deduced that the sum of the three r.m.s. values of the time- and 
space-dependent velocity fluctuations for high Ra is independent of Ra in the present 
normalization scheme. A similar result was found by Dubois & Berg6 (1 978) for the 
transition range a t  a higher Prandtl number. The numerical results, especially for ug 
and T (figure 1 I ) ,  are also nearly independent of Ila. Major differences appear, however, 
for the numerical and experimental r.m.s. temperature values. The experimental data 
are lower and tend to decrease slightly. These problems seem to be associated with the 
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FIGURE 13. Comparison with experimental results of the averaged vertical temperature (a )  
and r.m.8. temperature value ( 6 )  profiles for Ra = 381 225, case 9. 

experimental data, because Fitzjarrald (1976) also obtained results that scattered 
broadly. 

Only those experimental data for which the Boussinesq approximation holds can be 
used to compare vertical profiles. The temperature profiles of Thomas & Townsend 
(1957) do not seem to satisfy this condition because of the lack of symmetry with 
respect to the centre of the channel (figure 13). The data of Deardorff & Willis (1967) 
obviously satisfy this condition. The numerical results agree with the experimental 
data elaborated by those authors. The vertical profiles of the r.m.s. temperature values 
(figure 13) determined by Thomas & Townsend (1957) are 50 yo lower than the other 
data, and the peak is located at  a greater distance from the wall. The numerical results 
agree largely with the experiment by Deardorff & Willis (1967). However, the calcu- 
lated maxfmum value is higher by about 30 yo. In  the appendix it is shown that this 
deviation is not due to the selection of inadequate grids. Application of finer grids 
reduces this difference by less than 4 yo (table 5). Figure 14 shows the profiles of the 
r.m.s. values of velocity fluctuations. The differences in the numerical results for u1 
and u2 are less than 10 %. The values measured by Deardorff & Willis (1967) are 
almost exactly between the two curves. The r.m.s. values of u3 rise more slowly, 
beginning a t  the wall, than the data measured by Deardorff, and they reach a higher 
maximum value in the centre of the channel. However, Deardorff’s data for the vertical 
component do not behave uniformly with respect to either the maximum value 
(figure 11) or the gradient near the wall for different Rayleigh numbers (see Deardorff & 
Willis 1967). 

Indeed, the numerical results can be confirmed by the profile of the vertical heat- 
flux cross-correlation coefficient, which, by definition, contains r.m.s. values (figure 14). 
Deardorff’s data show a strange suppression near the wall, exactly in the region of the 
peak of the r.m.s. temperature profile, which is contained neither in the experimental 
data of Adrian (1975) nor in the numerical result. 

5.2.4. EfJiciency of the method used. Comparison of the computer times of typically 
one hour with those of Daly’s (1  974) two-dimensional statistical turbulence model 
yields the interesting finding that, for the same Rayleigh number, the three-dimensional 
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FIGURE 14. Comparison with experimental results of the vertical profiles of the r.m.s. velocity 
values (a)  and of the vertical heat-flux cross-correlation coefficient ( b )  for Ra = 381 225, case 9. 

simulation up to case 9 is faster by roughly one order of magnitude. The main reason 
for the expenditure involved in Daly’s refined statistical turbulence model is its use of 
seven additional transport equations to model the unknown turbulent shear stresses 
and heat fluxes. The direct-simulation method does not call for model assumptions, and 
is therefore suited to advance calculations of cases not previously investigated. Thus 
these advantages of the direct method are further supplemented by major cost savings. 

6. Concluding recommendations 
For future investigations of BBnard convection by the method of direct numerical 

simulation the following recommendations or requirements are derived from the 
results discussed here : The method of deriving finite-difference formulas for the basic 
equations using Gauss’ theorem is a successful tool for all cases in which highly non- 
isotropic grids are used. It should be used for such simulations, in connection with a 
staggered grid, because no major approximations are necessary. To avoid the strong 
influence of the initial conditions and periodicity lengths mentioned by several authors, 
the initial fields should be mostly random and must not include any special structures. 
Depending on the problem a t  hand, the periodicity lengths of the grids should not be 
below the highest values used in this work. In  the zones near the wall finer meshes are 
desirable, if one wants to achieve better spatial resolution of the maximum values of 
velocity and temperature variations, or if one wants to investigate fluids with other 
Prandtl numbers. 

If it  is not possible to refine the grid in order to simulate convection a t  higher 
Rayleigh numbers, subgrid-scale structure models should be used. Verifications of 
these models can only be made by comparison with calculations without subgrid-scale 
structure models for low Rayleigh numbers, because really comprehensive detailed 
experimental information, especially for temperature statistics, is missing. The 
normalization used here allows direct comparison of results involving high and low 
Rayleigh numbers. 
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Case K M  K = 1 2 3 4 5 6 7 8 

1-4 8 0.125 0.125 0.125 0.125 c 0.125 0.125 0.125 0.125 
5 8 0.0625 0.125 0.125 0.1875 c 0,1875 0.125 0.125 0.0625 
6-12 16 0.02 0.03 0'045 0.065 0.08 0.08 0.09 0.09 c 

TABLE 4. Distribution of the vertical mesh width Ax8 over the vertical mesh index K. 'c'  marks 
the centre of the channel with respect to which grids are symmetrical. The grids of cases 13 and 
14 are derived from cases 6-12 by halving Ax,. 

Appendix. Influences of the grid 
A. 1.  Introduction 

The grids that can be realized on present-day computer systems delimit the accurate 
description of short-wave events, on the one hand, and long-wave events, on the other. 
For example the pronounced changes of the vertical temperature gradient near the 
wall and the smallest vortices, whose scales decrease with increasing Rayleigh number, 
require very short mesh widths. The large-scale structures observed in many experi- 
ments, and the maximum possible wavelength of the roll vortices, according to 
stability analysis, depend on the length of periodicity included in the simulation. The 
influence of both constraints will be discussed below using the example of the results 
of cases 4-14. The high-resolution cases 12-14 are discussed in more detail in Grotzbach 
(1980). 

A. 2. Limited simulation of minimum wavelengths 

A. 2. I .  Influence of mesh-width distribution in the vertical direction. Three different 
grids are used a t  Ra = 87300, cases 4-6, which differ most strongly in the vertical 
mesh width Ax, in the zone near the wall ( K  = 1 , 2  and K = K M  - I ,  K M )  (table 4) .  
The Nusselt number (table 2) shows a non-uniform tendency towards lower values with 
increasing resolution in the zone near the wall. Figure 8 clearly shows the maximum 
value (for case 4) to be too high. Obviously Ax,, is not sufficient to resolve adequately 
the temperature gradient at the wall. The comparison of the three related vertical 
temperature profiles in figure 15 shows comparable results for cases 5 and 6 only. 

The r.m.s. values of the velocity fluctuations (figure 11 and table 2) do not show 
distinct tendencies. By contrast, the r.m.s. temperature values exhibit an increasing 
tendency with increasing resolution. In  case of really insufficient spatial resolution it 
should decrease; see below. This is due to volume integration according to (2),  which 
implies that the peak of the r.m.s. value profile, which is closely limited in space, is 
flattened with increasing mesh widths (figure 15). Thus, if the results are interpreted 
correctly, the apparent rise does not indicate a lack of simulation. (The slight decrease 
of r.m.s. temperature values to the next higher Rayleigh number in figure 12 is also 
attributable to volume averaging because of the smaller spatial extension of the peak.) 

A. 2.2. Influence of mesh width in the horizontal direction. The influence of horizontal 
mesh widths can be investigated for cases 7, 9 ,12  and 13, 14 a t  Ra = 381 225. In each 
case, approximately the same periodicity lengths XI, have been used by successively 
halving one of the mesh widths Axi (table I ) .  In  cases 12-14, where resolution is better, 
the flow structures appearing in the contour line plots (figure 16) are comparable 
qualitatively with those of case 9 (figure 7) ;  the only difference being that the isolines 
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FIGURE 15. Influence on the vertical temperature (a )  and r.m.s. temperature value (b)  profiles at 
Ra = 87300 of the vertical mesh widths AzaW next to the wall. +, Argw = 0.125;. x , 0.0625; 
0, 0.02. 

are smoother owing to the larger number of mesh cells. As to quantitative results, the 
Nusselt number is about 10 % lower than in case 7 and 6 yo lower than in case 9 
(table 5 ) .  It can be seen from figure 8 that the lowest numerical results come close to 
the experimental data, but that  the deviations are still about 10 %. 

In  all of the high-resolution cases averaging was done over a larger number N M  of 
time steps (table 1) .  Nevertheless, statistical evidence of these average values is still 
limited, as can be seen from the standard deviations of the results given in table 5 .  The 
r.m.5. values of the velocity fluctuations scatter considerably, but show no distinct 
dependency on grid mesh widths. The r.m.s. temperature values seem to show a non- 
uniform, slightly decreasing tendency with increasing resolution, but the results of 
cases 9 and 14, for example, differ by less than 4 yo. Thus, we may conclude that the 
grid in cases 7 and 8 has an insufficient spatial resolution. The grid in case 9 comes 
close to the limit of resolution. It leads to uncertainties of, typically, only 6 %. 

A. 3. Limited simulation of maximum wavelengths 

A. 3.1, InJluence of the periodicity length. The periodicity lengths X ,  and X, should 
be prescribed at such high values that the events in the centre of the channel volume 
considered are not coupled statistically to the events at the boundaries. The extent to 
which the periodicity length X ,  = 2.8, which is used mostly, influences the results 
can be evaluated by comparison of cases 7-9 with Ra = 381225 (tables 1 and 2). 
Cases 7 and 8 differ only in the mesh number I M  in +he x, direction, and thus by a 
factor of 2 in periodicity lengths XI = I M  Ax,. 

Qualitative comparison of some isoline and vector plots for case 8 with the greatest 
periodicity length (figure 17) and the plots for case 9 (figure 7) leads to comparable 
dimensions for the structures. No large-scale structures are formed in caw 8 The 
quantitative comparison of cases 7 and 8 in table 2 does not reveal any influence. The 
Nusselt number remains unaffected by X,, like the relatively highly scattering r.m,s. 
values of the velocity and temperature fluctuations. 

A. 3.2. InJluence of t~~ree-dimens-onality. Problems were mentioned in 5 1 which 
above all occur in two-dimensional simulation, such as the tendency towards higher 
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FIGURE 16. Vertical and horizontal sections of the temperature and velocity fields at 
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Case h A7u ( ( l q ) A $  ( ( 2 w m a x ) +  ( ( 3 q ) m , x ) 4 -  ((*Wrn.%J& 
7 0.1242 7.7520.35 0-163iO.010 0.180f0.018 0.207i0.012 0.166+0~007 
9 0.0987 7.44+ 0.29 0.151 f 0.008 0-163 * 0.016 0.207 f 0.009 0.157 f 0.006 

12 0.0785 6.80+ 0.26 0.202 & 0.014 0.162 5 0.010 0,199 0.005 0 . 1 5 9 i  0.005 
13 0.0623 7.04* 0.30 0.166 + 0.008 0-170+ 0.012 0.203 f 0.012 0.152 0.004 
14 0.0495 6.93 & 0.16 0.166 + 0.010 0.170 & 0.009 0.214 i 0.011 0.151 0.005 

- 1  - TABLE 5. Influence of the mean grid width h = ( A x l A x , A x , ) ~  (Ax3 = 1 / K M )  on the Nusselt 
number and maximum r.m.s. values of velocity and temperature fluctuations a t  Ru = 381225 
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FIGURE 17.  Vertical and horizontal sections of the temperature and velocity fields at  
different times for Ra = 381 225, case 8, (q, a,)-plane and (alr a,)-plane. 

Nusselt numbers and shorter wavelengths. From the results of cases 10 and 11 i t  appears 
that  an analogous experience with TURBIT can be made in two-dimensional simu- 
lation. Two-dimensional simulations are approximated here by a reduction to J M  = 2 
(table i ) ,  which results in stronger statistical coupling in the x2 direction. In periodicity 
lengths X ,  these cases correspond to cases 7 and 8. 

In  quantitative comparison of the numerical results for cases 10 and 11 the periodi- 
city length X ,  exerts practically no visible influence (table 2) .  By contrast, both cases 
differ quite remarkably from the three-dimensional simulations 7 and 8. The charac- 
teristic vortex dimension h (table 3) is much smaller in the two-dimensional case, 
although much larger vortices could develop because of the greater periodicity length. 
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This was also observed by Lipps & Somerville (1971) in pure two-dimensional simu- 
lations. The Nusselt numbers are much too high (see table 2 and figure 8). According 
to Lipps & Somerville (1971) the Nusselt number can only be improved by forced 
fitting of A. 

The r.m.s. values of the temperature fluctuations do not undergo any modification 
(table 2 ) .  Consequently the buoyancy term in the momentum equation remains un- 
changed. Since the velocity fluctuations in the x2 direction are strongly attenuated, 
owing to the short periodicity length X ,  = J M  Ax, = 0.35, the turbulence energy 
is distributed essentially among the u1 and u3 components only. Therefore the 
turbulence-energy profiles (half the sum of squares of the r.m.s. values) differ by only 
10 yo a t  the maximum, although the u1 and u3 r.m.s. values are too high (figure 11). The 
vertical heat-flux cross-correlation coefficients (table 2 )  are unchanged. They lie in a 
realistic range, despite erroneous u3 r.m.s. values. The reason is that the Nusselt 
number as a measure of the dominant turbulent heat flux is too high by approximately 
the same factor as the us r.m.6. value. 

A. 4. Conclusions from the injluences of the grid 

Investigation of the limited resolution for short wavelengths of the grids led to the 
following results. Assignment to the Rayleigh numbers of the vertical mesh division 
selected was considered appropriate. Only two exceptions were found. Firstly for the 
vertical division of the grid of case 4, which created equidistant meshes, the slightly 
high Nusselt number and the temperature profile indicate an insufficient resolution of 
the vertical temperature gradients a t  the walls. Secondly, halving the horizontal mesh 
width a t  the maximum Rayleigh number produced a minor quantitative influence on 
the general grid resolution capability. From several results of cases 12-14 the con- 
clusion can be drawn that the grid of case 9 comes close to the limit of resolution for the 
smallest vortices occurring. Thus cases 7 and 8 have insufficient spatial resolutions. 
At higher Rayleigh numbers subgrid-scale structure models will be necessary with 
most of the grids used here. The theory of calculating the coefficients of the subgrid- 
scale heat-flux model available in the TURBIT-3 code has been proven to be a proper 
tool for assessing the spatial resolution capabilities of the grid chosen (Grotzbach 1980). 

The limited resolution for high wavelengths had no special effect. It was reflected 
quantitatively only in small characteristic vortex dimensions and correlation lengths, 
respectively. Thus the periodicity length seems to have a similar influence on the 
characteristic wavelength as the aspect ratio in finite channels, because Fitzjarrald 
(1976) also found decreasing dominant wavelengths with increasing Ra in low-aspect- 
katio experiments. Effects on other statistical data of the turbulence fields a t  high 
Rayleigh numbers do not appear. Experience accumulated by other authors is repro- 
duced here in approximately two-dimensional simulations, for example the tendency 
towards higher Nusselt numbers and shorter wavelengths. Thus the insensitivity to 
grid parameters observed in the other cases is a physical result reproduced correctly 
by the computer program. 
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